检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津师范大学天津市无线移动通信与无线电能传输重点实验室,天津300387
出 处:《天津师范大学学报(自然科学版)》2017年第5期55-59,共5页Journal of Tianjin Normal University:Natural Science Edition
基 金:Supported by the National Natural Science Foundation of China(61603275);the Applied Basic Research Program of Tianjin(15JCYBJC51500)
摘 要:遗传算法(GA)是一种适合于数值优化的算法原型,基于1个三父体交叉(TPC)和1个多样性算子虽然可使GA的性能得到很大改进,但仍受制于几个算法参数.在此基础上,对TPC和多样性算子中算法参数的自适应遗传算法进行研究.算法的关键参数在每次迭代中由正态分布生成,并在1组13个数学函数集上施行.对原算法与添加参数适应算法的结果在函数f_1~f_(13)上进行对比,并给出了f_4和f_(10)的收敛过程,分析表明自适应GA-TPC算法比原算法在解决具体问题时更加高效和稳定.Genetic algorithm( GA) is a suitable algorithm prototype for numerical optimization. Based on a three-parentcrossover ( TPC)and a diversity operator, the performance of GA is greatly improved, though it is limited by a few algorithmicparameters. The adaptation of algorithmic parameters in TPC and diversity operator is investigated. The key parameters aregenerated based on normal distribution in each iteration. Experiments are conducted on a set of 13 mathematical functions.The results of the algorithm with and without parameter adaptation are compared from 1 to 13. Furthermore, the convergenceprocesses of 4 and 10 are presented which show that the adaptive GA-TPC is more efficient and more robust than the GA-TPCalgorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15