基于Hadoop的改进聚类算法在图像修复上的应用  被引量:1

Application of improved clustering algorithm based on Hadoop in image inpainting

在线阅读下载全文

作  者:王林[1] 雷佳[1] 郝惠惠 

机构地区:[1]西安理工大学自动化与信息工程学院,陕西西安710048

出  处:《微型机与应用》2017年第18期49-51,共3页Microcomputer & Its Applications

摘  要:针对模糊聚类算法在运算大数据量时性能差的问题,提出基于Hadoop分布式平台的改进算法进行图像修复。对于受损图像信息,首先将Canopy算法和模糊聚类相结合在Hadoop平台上进行并行化,然后进行字典训练获得修复图像。实验结果表明,该算法在均方误差和峰值信噪比上均优于改进前的图像修复算法,提高了图像修复质量并且减少了算法的运行时间,适合修复海量图像。Aiming at the problem that the fuzzy clustering algorithm is poor in computing large data volume,an improved algorithm based on Hadoop distributed platform is proposed for image restoration. For the damaged image information,the Canopy algorithm and the fuzzy clustering are combined on the Hadoop platform for parallelization,and then the dictionary is trained to obtain the repaired image. The experimental results show that the algorithm is superior to the previous image restoration algorithm in terms of mean square error and peak signal to noise ratio,which improves the quality of image restoration and reduces the running time of the algorithm. It is suitable for repairing massive image.

关 键 词:图像修复 聚类 HADOOP 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象