检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张善文[1] 张晴晴[1] 齐国红[1] 周伟[1]
机构地区:[1]郑州大学西亚斯国际学院,河南新郑451150
出 处:《江苏农业科学》2017年第18期205-208,共4页Jiangsu Agricultural Sciences
基 金:国家自然科学基金(编号:61473237);河南省教育厅自然科学基础研究计划(编号:15A520101);河南省科技攻关计划(编号:152102310368)
摘 要:针对复杂背景下的苹果病害叶片分割问题,提出一种基于改进的K均值聚类的苹果病害叶片病斑分割方法。首先将原始叶片图像由RGB(R为红,G为绿,B为蓝)颜色空间转换到Lab(L为亮度,a为从洋红色至绿色的范围,b为从黄色至蓝色的范围)颜色空间,然后在Lab颜色空间中利用ab二维数据空间的颜色差异,以欧式距离度量像素间的相似度,使用K均值对图像进行聚类,利用数学形态学中的开闭交替滤波方法对聚类后的灰度图像进行校正,最后得到图像病斑。对3种常见苹果病害叶片图像进行分割,并与其他分割方法进行比较。结果表明,该方法效果好,其误分率为8.41%。
关 键 词:K均值聚类 苹果病害叶片图像 病斑分割 改进的K中值聚类
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.132.103