检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗晶晶 余海东[1] 赵春璋[1,2] 王皓[1,2] LUO Jingjing YU Haidong ZHAO Chunzhang WANG Hao(State Key Laboratory of Mechanical System and Manufacture for Thin-walled Structures, Shanghai Vibration Shanghai Key Laboratory of Digital Jiao Tong University, Shanghai 200240, China)
机构地区:[1]上海交通大学机械系统与振动国家重点实验室,上海200240 [2]上海交通大学上海市复杂薄板结构数字化制造重点实验室,上海200240
出 处:《上海交通大学学报》2017年第10期1174-1180,共7页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金项目(51275292);国家重点基础研究发展基金项目(2014CB046600)资助
摘 要:基于绝对节点坐标法,考虑变截面梁单元的几何边界特征,利用非线性介质力学方法推导其刚度矩阵,进而建立柔性梁结构动力学方程.基于梁结构运动过程中状态空间方程和Lyapunov理论,提出变截面柔性梁结构运动及稳定性判定方法,研究了材料属性与变截面对梁结构空间运动过程中稳定性的影响.结果表明:当材料弹性模量较小时,变截面梁的稳定性略优于等截面梁;当材料的弹性模量增大,等截面梁单元稳定性大大增加,而变截面梁单元所受影响甚微;当弹性模量的增加达到一定值后,等截面梁的运动也趋于稳定.The boundary features of the variable cross-section beams are taken into consideration and the stiffness matrix is derived based on the nonlinear continuum mechanics. A dynamic model of the beam is established by using the absolute nodal coordinate formulation. The state-space equation of the beam during motion is developed. Based on the Lyapunov theory a criterion of the motion stability of the flexible beams is proposed, and the effects of material properties and variable cross-sections are investigated. The results indicate that with a small elastic modulus, the variable cross-section beam shows a better stability than the constant cross-section beam. As the elastic modulus increases, the stability of the constant cross- section becomes better than that of the variable cross-section beam. When the elastic modulus reaches a certain value, the motion of constant cross-section beam becomes stable.
关 键 词:变截面柔性梁 大变形 稳定性 LYAPUNOV理论
分 类 号:TH113.2[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249