检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶婷 YE Ting(College of Information and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China)
出 处:《计算机系统应用》2017年第10期190-195,共6页Computer Systems & Applications
基 金:科技部科技支撑项目(BAH29F01);江苏省重点研发计划(BE2016178)
摘 要:由于标签是由用户根据自己的理解和喜好随意进行标注的因此存在大量的噪声标签,导致基于标签的推荐系统准确率不高.针对这种情况,提出了结合评分信息熵的标签推荐算法.算法通过判断用户在标注标签的评分稳定程度来确定该标签对于用户的重要性从而过滤掉噪声标签将重要标签赋予较高权重,并构建用户的兴趣模型,最后应用到协同过滤算法中产生推荐.该算法能有效地利用评分权重并结合信息熵来增强推荐准确率,与以往的基于标签的推荐算法进行对比,能获得满意的推荐效果.As the label is marked by the user according to their own understanding and preferences, the expression of the concept is fuzzy and there are a large number of noise tags, resulting in the low efficiency of the traditional label-based recommendation algorithm recommended. casein view of this problem, a tag recommendation algorithm combining the score information entropy is proposed. The algorithm determines the importance of the tag for the user in order to build the user's interest model for the rating of the label. The algorithm can effectively use the score weight and combine the information entropy to enhance the recommendation accuracy, and compared with the previous label-based recommendation algorithm, it can get a satisfactory recommendation effect.
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222