基于多岛遗传-模拟退火算法的气动外形优化  被引量:1

Aerodynamic shape optimization based on the hybrid MIGA-SA method

在线阅读下载全文

作  者:郄永军 徐勇 王方鹏 QIE Yong-jun XU Yong WANG Fang-peng(Center of System Engineering Application, AVIC Information Technology Corporation Ltd., Beijing 100028, China School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)

机构地区:[1]金航数码科技有限责任公司系统工程应用中心,北京100028 [2]北京理工大学宇航学院,北京100081

出  处:《飞行力学》2017年第5期26-30,共5页Flight Dynamics

基  金:国家自然科学基金资助(U1430113)

摘  要:针对超声速翼型滑翔机的气动外形优化问题,提出了一种多岛遗传算法与模拟退火算法相结合的混合优化算法。首先,通过多岛遗传算法产生一个随机的初始种群,找到全局最优点附近区域的一个次优解;然后,将此次优解作为模拟退火算法的初值启动退火进程,缩小设计空间的范围,找到全局最优解。优化结果表明,所提混合算法可以有效地解决飞行器外形优化问题;在数量巨大的设计空间中,滑翔机的最优气动外形能够以较低的计算资源代价快速得到;双弧形翼型的气动特性较六边形翼型更有优势,叉形尾翼的静稳定性和控制效率高于十字形;优化后的外形极大地增加了滑翔机的滑翔距离。For the aerodynamics shape optimization of the supersonic glider, this paper presents a hybrid optimization algorithm combining the multi-island genetic algorithm with the simulated annealing methods. Firstly, a random population is generated and a suboptimal solution is found near the global optimal solution area through MIGA. Then, it takes the suboptimal solution as SA' s initial value and starts an- nealing process of SA, narrow the range of the design space, and search the area to find the global opti- mal solution. The optimization results show that the improved hybrid method can effectively solve the flight vehicle optimal design issues. The glider optimal aerodynamic geometry can be quickly obtained by using of the hybrid method under the conditions of huge design space and low calculating resource re- quirements. The aerodynamic characteristics for the double curved airfoil are always superior to the hexa- gonal airfoil, the static stability and the control efficiency of the forked configuration tail are higher than the cross configuration. The final optimal geometry can greatly extend the flight distance for the glider.

关 键 词:超声速滑翔机 气动优化 多岛遗传算法 模拟退火算法 

分 类 号:V221.3[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象