属性值细化的矩阵增量约简算法  被引量:2

Matrix-based incremental reduction approach with attribute values refining

在线阅读下载全文

作  者:李丹 

机构地区:[1]成都东软学院计算机科学与技术系,四川青城山611844

出  处:《计算机工程与应用》2017年第21期68-71,76,共5页Computer Engineering and Applications

基  金:国家自然科学基金联合项目(No.U1230117)

摘  要:现实生活中许多数据库都是动态变化的,为了获取新的知识,传统的方法需要重复计算,耗时巨大。为了克服这个缺陷,有效处理动态数据,许多学者提出了增量学习方法。针对决策表属性值动态变化,提出了基于属性值细化的矩阵增量约简算法,当一部分属性值被细化时,同非增量约简方法相比,增量方法能快速找到新的约简,最后通过UCI数据进行性能测试,实验仿真结果表明所提增量约简算法是有效的。In practices, many real data in databases may vary dynamically. One has to run a knowledge acquisition method repeatedly in order to acquire new knowledge. This is very time-consuming. To overcome this deficiency, incremental approaches have been presented to deal with dynamic data set. This paper proposes a matrix-based incremental reduction approach with attribute values refining. When a part of data in a given data set is replaced by some new data, compared with the non-incremental reduction approach, the developed incremental reduction approach can find a new reduct in a much shorter time. Finally, experiments on two data sets downloaded from UCI show that the developed algorithm is effective.

关 键 词:属性值细化 增量学习 属性约简 粗糙集 知识粒度 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象