检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王春林[1] 马乐群[1] WANG Chunlin MA Lequn(College of Automotive Engineering, Weifang University of Science and Technology, Weifang 262700, Chin)
机构地区:[1]潍坊科技学院汽车工程学院,山东潍坊262700
出 处:《热加工工艺》2017年第20期214-216,220,共4页Hot Working Technology
摘 要:采用7×35×2三层拓扑结构,以锻造铝合金牌号、退火温度、退火时间、固溶温度、固溶时间、时效温度、时效时间作为输入层参数,以耐磨损性能和冲击性能作为输出层参数,构建了汽车用锻造铝合金热处理工艺优化神经网络模型,并进行了模型训练、预测验证和生产线应用。结果表明,汽车用锻造铝合金用神经网络优化模型的优势较明显,预测性较好,且精度性较高。和生产线传统工艺相比,通过神经网络优化模型热处理的试样磨损体积减小22%、冲击吸收功增大了79%。Thaking the forging aluminum alloy grades, annealing temperature, annealing time, solution temperature, solution time, aging temperature and aging time as input layer parameters, and taking wear resistance and impact properties as output layer parameters, the neural network model of heat treatment process optimization of wrought aluminum alloy for automobile was built. The model was trained, and the forecast verification and the production line application were carried out. The results show that the advantage of the neural network optimization model of forging aluminum alloy for the automobile is obvious, the prediction is good, and the precision is high. Compared with traditional production line, the wear volume of the samples heat-treated by the neural network optimization model is reduced by 22% and the impact absorption energy is increased by 79%.
关 键 词:神经网络 锻造钒合金 热处理 工艺优化 磨损性能 冲击性能
分 类 号:TG156[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186