检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方芳 田世明[2] 卜凡鹏[2] 苏运 Fang Fang Tian Shiming Bu Fanpeng Su Yun(State Grid Beijing Changping Electric Power Supply Company, Beijing 102200, China China Electric Power Research Institute, Beijing 100192, China Shanghai Electric Power Company, Shanghai 200437, China)
机构地区:[1]国网北京市电力公司昌平供电公司,北京102200 [2]中国电力科学研究院,北京100192 [3]国网上海市电力公司,上海200437
出 处:《电子技术应用》2017年第11期18-21,26,共5页Application of Electronic Technique
基 金:国家863计划(2015AA050203);国家电网公司科技项目(52094016000A)
摘 要:针对传统短期负荷预测中预测模型缺乏自适应性、预测影响因素复杂难于筛选的问题,提出一种结合自适应技术的岭回归预测模型。通过引入岭回归技术,能在预测中多方面考虑各种复杂因素而不会受到因素间多重共线性的影响;引入虚拟预测日,同时设置不同权重对相似历史样本进行自适应筛选并训练,能够对每一个预测日减小预测误差。算例分析表明,应用结合自适应技术的岭回归预测方法后,实际预测误差得到显著降低。Aiming at the problem that the traditional forecasting model of short-term load forecasting is lack of adaptability and the factors affecting the prediction are complex and difficult to filter, a ridge regression model combined with adaptive technology is proposed. Through ridge regression technique is introduced, many can predict the consideration of various complex factors and will not be affected by factors of multieollinearity. Introducing virtual prediction and setting different weights for adaptive training on screening and similar historical samples can reduce the prediction error. The example analysis shows that the prediction error is sig- nificantly reduced by using the ridge regression prediction method combined with adaptive technique.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222