Property of Almost Cohen-Macaulay over Extension Modules  

Property of Almost Cohen-Macaulay over Extension Modules

在线阅读下载全文

作  者:Samaneh Tabejamaat Amir Mafi Khadijeh Ahmadi Amoli Samaneh Tabejamaat Amir Mafi Khadijeh Ahmadi Amoli(Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehran, Iran Department of Mathematics, University of Kurdistan P.O. Box: 416, Sanandaj, Iran Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehraa, Iran)

机构地区:[1]Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehran, Iran [2]Department of Mathematics, University of Kurdistan P.O. Box: 416, Sanandaj, Iran [3]Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehraa, Iran

出  处:《Algebra Colloquium》2017年第3期509-518,共10页代数集刊(英文版)

摘  要:Let (R, m) be a Cohen-Macaulay local ring of dimension d, C a canonical R-module and M an almost Cohen-Macaulay R-module of dimension n and of depth t. We prove that dim Extd-n R(M,C) = n and if n ≤ 3 then Extd-n(M,C) is an almost Cohen-Macaulay R-module. In particular, if n = d ≤ 3 then HomR(M, C) is an almost Cohen-Macaulay R-module. In addition, with some conditions, we show that Ext1R(M, C) is also almost Cohen-Macaulay. Finally, we study the vanishing Ext2R (Extd-n (M, C), C) and Ext2R (Extd-n(M, C), C).Let (R, m) be a Cohen-Macaulay local ring of dimension d, C a canonical R-module and M an almost Cohen-Macaulay R-module of dimension n and of depth t. We prove that dim Extd-n R(M,C) = n and if n ≤ 3 then Extd-n(M,C) is an almost Cohen-Macaulay R-module. In particular, if n = d ≤ 3 then HomR(M, C) is an almost Cohen-Macaulay R-module. In addition, with some conditions, we show that Ext1R(M, C) is also almost Cohen-Macaulay. Finally, we study the vanishing Ext2R (Extd-n (M, C), C) and Ext2R (Extd-n(M, C), C).

关 键 词:almost Cohen-Macaulay module Ext functor finiteness dimension 

分 类 号:O241.1[理学—计算数学] TP273.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象