检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Samaneh Tabejamaat Amir Mafi Khadijeh Ahmadi Amoli Samaneh Tabejamaat Amir Mafi Khadijeh Ahmadi Amoli(Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehran, Iran Department of Mathematics, University of Kurdistan P.O. Box: 416, Sanandaj, Iran Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehraa, Iran)
机构地区:[1]Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehran, Iran [2]Department of Mathematics, University of Kurdistan P.O. Box: 416, Sanandaj, Iran [3]Department of Mathematics, Payame Noor University P.O.Box: 19395-3697, Tehraa, Iran
出 处:《Algebra Colloquium》2017年第3期509-518,共10页代数集刊(英文版)
摘 要:Let (R, m) be a Cohen-Macaulay local ring of dimension d, C a canonical R-module and M an almost Cohen-Macaulay R-module of dimension n and of depth t. We prove that dim Extd-n R(M,C) = n and if n ≤ 3 then Extd-n(M,C) is an almost Cohen-Macaulay R-module. In particular, if n = d ≤ 3 then HomR(M, C) is an almost Cohen-Macaulay R-module. In addition, with some conditions, we show that Ext1R(M, C) is also almost Cohen-Macaulay. Finally, we study the vanishing Ext2R (Extd-n (M, C), C) and Ext2R (Extd-n(M, C), C).Let (R, m) be a Cohen-Macaulay local ring of dimension d, C a canonical R-module and M an almost Cohen-Macaulay R-module of dimension n and of depth t. We prove that dim Extd-n R(M,C) = n and if n ≤ 3 then Extd-n(M,C) is an almost Cohen-Macaulay R-module. In particular, if n = d ≤ 3 then HomR(M, C) is an almost Cohen-Macaulay R-module. In addition, with some conditions, we show that Ext1R(M, C) is also almost Cohen-Macaulay. Finally, we study the vanishing Ext2R (Extd-n (M, C), C) and Ext2R (Extd-n(M, C), C).
关 键 词:almost Cohen-Macaulay module Ext functor finiteness dimension
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222