检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学计算机科学与技术学院,江苏南京211106
出 处:《计算机技术与发展》2017年第11期37-40,共4页Computer Technology and Development
基 金:国家"973"重点基础研究发展计划项目(2014CB744900)
摘 要:社交网络在近些年得到了迅速发展,如今各个行业都在努力加入社交元素,如何提高链路预测方法在社交网络中的预测准确度成为一个热门研究方向。链路预测方法由于网络结构的不同会表现出不同的预测效果,因此可以根据社交网络的结构特性对链路预测方法进行改进,从而提高在社交网络中的预测准确度。社交网络是对人与人之间某种社会关系的描述,因此和其他复杂网络相比,会表现出独特的网络性质和结构,其中最主要的是"小世界"特性和无标度特性。针对社交网络的这种特性,对原有的链路预测方法进行改进,在共同邻居方法的基础上加入了优先连接对节点相似性的贡献。真实社交网络数据集的对比实验结果表明,改进后的方法在没有增加时间复杂度的情况下提高了预测准确度。The social network has been developing rapidly in recent years. Various industries are now trying to integrate social elements, so how to improve the accuracy of link prediction methods in social networks has become a popular research. Due to the different network structures, the link prediction methods will be different in prediction performance so that it can be improved according to the characteris- tics of social network structure,improving of the accuracy of prediction. The social network is a description of certain social relations between people, so compared with other complex networks,it will exhibit its unique properties and network structure, of which the most important is the "small world" and scale-free characteristics. According to the characteristics of social network, the previous link prediction methods can be improved, adding the contribution of priority connection based on common neighbors. The experiments on real social net- work data sets show that the improved method can improve the accuracy of prediction without increasing time complexity.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.25