基于SIFT特征的肺部非刚性配准应用研究  被引量:2

Research on Application of Pulmonary Non-rigid Registration Method with 3D-SIFT Features

在线阅读下载全文

作  者:史明霞[1] 张旭 张涛[3] 

机构地区:[1]中国科学院自动化研究所,北京100190 [2]北京中盾安全技术开发公司,北京100048 [3]中国人民解放军总医院胸外科,北京100853

出  处:《计算机技术与发展》2017年第11期181-186,共6页Computer Technology and Development

基  金:北京市自然科学基金项目(7142152)

摘  要:随着肺癌发病率的增高和影像技术的进步,越来越多的微小肺癌(尤其是肺部磨玻璃结节)得以检出,对于此类病变首先考虑手术治疗。但肺是含气组织,在术中会发生萎陷。巨大的体积变化导致肺内结节也随之发生位移,术前CT确定的位置在术中无法定位。针对这一问题,在术中肺萎陷动物模型基础上,提出了一种融合3D-SIFT特征的B样条配准方法。该方法首先提取局部特征,筛选并匹配较好的特征点;然后依据浮动图像与参考图像匹配的特征点,得到浮动图像的初始位置;最后利用控制网格对浮动图像进行配准。经初步研究,对于不同萎陷状态的肺部图像,应用此方法得到了很好的配准结果。因此,融合3D-SIFT特征的B样条配准方法适合肺部图像配准,将来有望应用于微小肺癌的术中定位。With the increased incidence of lung cancer and the progress of medical imaging technology, more and more small pulmonary nodules (especially for ground glass nodules) have been detected. Surgical treatment is the first consideration for such nodules. But lung is a gas containing organ, which will collapse during operation. With the huge volume change, pulmonary nodule will change its position, which makes location difficult in the operation. To solve it, an animal model database simulating lung collapse in operation is established. A B-spline curves registration method with fusion of 3D-SIFT features is proposed. Local feature is extracted firstly, and then the feature points are selected and matched. According to the feature points the initial position of the floating image is obtained. Used the control grid, the floating image is registered finally. For a series of lung CT images in different collapse states, satisfactory registration results are obtained by it which is suitable for pulmonary images registration and can be used for intraoperative localization of small pulmonary nod- ules in the future.

关 键 词:肺部图像配准 图像配准方法 3D-SIFT 非刚性配准 B样条配准 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术] R318.04[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象