检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Weijian LIU Hui HAN Jun LIU Hongli LI Kai LI Yong-Liang WANG
机构地区:[1]Air Force Early Warning Academy [2]State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System [3]National Laboratory of Radar Signal Processing, Xidian University [4]Collaborative Innovation Center of Information Sensing and Understanding, Xidian University [5]School of Electronic Information, Wuhan University
出 处:《Science China(Information Sciences)》2017年第11期217-230,共14页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 61501505, 61501351)
摘 要:In this paper, we consider the problem of multichannel radar signal detection in interference and structure nonhomogeneity. The interference is often caused by electromagnetic countermeasure (ECM) systems or industrial activity, while the nonhomogeneity usually arises because of rapid variations in terrain or radar antenna structure. We propose three adaptive detectors according to three common criteria of detector de- sign, namely, the generalized likelihood ratio test (GLRT), Rao test, and Wald test. Extensive performance comparisons are conducted under different scenarios. It is shown that when the nonhomogeneity is severe, the detector devised according to the GLRT achieves the best detection performance. In other scenarios, the detector designed according to the Wald test may be the best choice, which has the highest probability of detection.In this paper, we consider the problem of multichannel radar signal detection in interference and structure nonhomogeneity. The interference is often caused by electromagnetic countermeasure (ECM) systems or industrial activity, while the nonhomogeneity usually arises because of rapid variations in terrain or radar antenna structure. We propose three adaptive detectors according to three common criteria of detector de- sign, namely, the generalized likelihood ratio test (GLRT), Rao test, and Wald test. Extensive performance comparisons are conducted under different scenarios. It is shown that when the nonhomogeneity is severe, the detector devised according to the GLRT achieves the best detection performance. In other scenarios, the detector designed according to the Wald test may be the best choice, which has the highest probability of detection.
关 键 词:adaptive detection generalized likelihood ratio test HETEROGENEITY INTERFERENCE multichannel sig-nal nonhomogeneity Rao test Wald test
分 类 号:TN957.51[电子电信—信号与信息处理] TN975[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117