Semi-linear Elliptic Equations on Graph  

Semi-linear Elliptic Equations on Graph

在线阅读下载全文

作  者:ZHANG Dongshuang 

机构地区:[1]Department of Mathematics, Renmin University of China, Beijing 100872, China

出  处:《Journal of Partial Differential Equations》2017年第3期221-231,共11页偏微分方程(英文版)

摘  要:Let G = (V,E) be a locally finite graph, Ω C V be a finite connected set, A be the graph Laplacian, and suppose that h : V →R is a function satisfying the coercive condition on Ω, namely there exists some constant δ〉 0 such that Ωu(-△+h)udμ≥δ Ω|u|^2dμ, u:VR. By the mountain-pass theorem of Ambrosette-Rabinowitz, we prove that for any p 〉 2, there exists a positive solution to -△μ+hu=|u|^p-2u in Ω. Using the same method, we prove similar results for the p-Laplacian equations. This partly improves recent results of Grigor'yan-Lin-Yang.

关 键 词:SOBOLEV EMBEDDING Yamabe type equation LAPLACIAN on graph. 

分 类 号:O175.27[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象