分数Brown运动随机固定资产模型数值解的均方散逸性  

Mean-square Dissipativity of Numerical Methods for Stochastic Age-dependent Capital System with Fractional Brown Motion

在线阅读下载全文

作  者:李强 张启敏 李西宁[2] LI Qiang ZHANG Qimin LI Xining(School of Mathematics and Computer Science, Beifang University for Nationalities, Yinchuan 750021, Ningxia School of Mathematics and Computer, Ningxia University, Yinchuan 750021, Ningxia)

机构地区:[1]北方民族大学数学与信息科学学院,宁夏银川750021 [2]宁夏大学数学与计算机学院,宁夏银川750021

出  处:《四川师范大学学报(自然科学版)》2017年第5期632-638,共7页Journal of Sichuan Normal University(Natural Science)

基  金:国家自然科学基金(11461053)

摘  要:讨论一类带分数Brown运动随机固定资产模型数值解的均方散逸性.在一定条件下,根据It?公式和Bellman-Gronwall型引理,得出了模型具有均方散逸性.分别利用分步倒向Euler方法和补偿倒向Euler方法讨论数值解的均方散逸性,并给出数值解散逸存在的充分条件,通过数值算例对所给出的结论进行验证.In this paper, we introduce a class of stochastic age-dependent capital system with fractional Brown motion. By using It's formula and Bellman-Gronwall-type estimates, a sufficient condition is established to guarantee the mean-square dissipativity of this model. Then, it is shown that the mean-square dissipativity is preserved by the split-step backward Euler method and compensated backward Euler method under a step-size constraint. Finally, the theoretical result is illustrated by a numerical experiment.

关 键 词:分数Brown运动 Bellman-Gronwall型引理 补偿倒向Euler方法 均方散逸 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象