检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:娄康 薛彦兵 张桦[1,2] 徐光平[1,2] 高赞 王志岗[1,2]
机构地区:[1]计算机视觉与系统省部共建教育部重点实验室(天津理工大学),天津300384 [2]天津市智能计算及软件新技术重点实验室(天津理工大学),天津300384
出 处:《计算机应用》2017年第11期3152-3156,3187,共6页journal of Computer Applications
基 金:国家自然科学基金资助项目(U1509207;61325019;61472278;61403281;61572357)~~
摘 要:针对公交车环境下的人脸检测具有光照变化、模糊、遮挡、低分辨率和姿势变化等问题,提出了基于代价敏感深度决策树的人脸检测算法。首先,基于归一化的像素差异(NPD)特征构建单个深度二次树(DQT);接着,根据当前决策树的分类结果,利用代价敏感Gentle Adaboost方法对样本权重进行更新,依次训练出多棵深度决策树;最后,将所有决策树通过Soft-Cascade级联得到最终的检测算法。在人脸检测数据集(FDDB)和公交车视频上的实验结果表明,所提算法与现有的深度决策树算法相比,在检测率和检测速度上均有提升。The problems of face detection in bus environment include ambient illumination changing, image distortion, human body occlusion, abnormal postures and etc. For alleviating these mentioned limitations, a face detection based on cost- sensitive Deep Quadratic Tree (DQT) was proposed. First of all, Normalized Pixel Difference (NPD) feature was utilized to construct and train a single DQT. According to the classification result of the current decision tree, the cost-sensitive Gentle Adaboost method was used to update the sample weight, and a number of deep decision trees were trained. Finally, the classifier was produced by Soft-Cascade method with multiple upgraded deep quadratic trees. The experimental results on Face Detection Data set and Benchmark (FDDB) and bus video show that compared with the existing depth decision tree algorithm, the proposed algorithm has improved the detection rate and detection speed.
关 键 词:归一化的像素差异特征 代价敏感 深度二次树 GENTLE ADABOOST方法 Soft-Cascade
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63