结合多维定标和局部纹理特征的改进SIFT匹配算法  被引量:2

Improved SIFT matching algorithm combining multidimensional scaling with local texture feature

在线阅读下载全文

作  者:程诗梦 周之平[1] 李忠民[1] CHENG Shi-meng ZHOU Zhi-ping LI Zhong-min(School of Information Engineering, Nanchang Hangkong University, Nanchang 330063,Chin)

机构地区:[1]南昌航空大学信息工程学院,江西南昌330063

出  处:《计算机工程与设计》2017年第11期3087-3092,共6页Computer Engineering and Design

基  金:国家自然科学基金项目(61263040)

摘  要:针对SIFT(scale-invariant feature transform)算法计算速度低、匹配精度不高的问题,提出一种结合多维定标和局部纹理特征的改进SIFT匹配算法。通过多维定标算法(multidimensional scaling,MDS)对128维SIFT特征描述符进行降维,提高SIFT特征匹配的计算速度,与其它降维算法相比,MDS保证了数据的几何拓扑性;基于特征一致性匹配规则和比值一致性匹配规则,提出一种改进的双向匹配策略;分析比对匹配点对邻近区域的LBP纹理特征,进一步降低误匹配率。仿真结果表明,与同类算法相比,该方法在匹配精度和匹配速度上都得到一定程度的改善。Aiming at the problems of the low speed and the poor matching precision of SIFT algorithm(scale-invariant feature transform),an improved SIFT matching algorithm combining multidimensional scaling with local texture feature was proposed.The 128 dimension feature descriptor of SIFT was reduced using multidimensional scaling algorithm(multidimensional scaling,MDS),improving the computing speed of SIFT feature matching.Compared with other algorithms,MDS ensured the topological structure in the geometry of data.An improved bidirectional matching strategy was proposed based on the consistency of characteristics and the consistency of ratio.LBP features of the matching points’ adjacent area were analyzed and compared to reduce the error matching rate further.Simulation results show that the proposed method provides better accuracy and higher speed than other similar algorithms.

关 键 词:特征匹配 多维定标(MDS) SIFT特征 双向匹配 纹理分析 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象