检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州工业职业技术学院机电工程系,江苏苏州215104 [2]南京航空航天大学机电学院,江苏南京210006
出 处:《电气传动》2017年第11期3-8,共6页Electric Drive
基 金:江苏省自然科学基金面上研究项目(BK20161229);江苏高校"青蓝工程"(2017[15])资助
摘 要:复杂工况下事先设定的PI参数不能满足电机新的运行状态,针对此问题设计一种基于对角递归神经网络PI参数动态自整定的转速估计器,对其中的PI参数进行动态整定以提高系统鲁棒性和估计精确度。分析了基于模型参考自适应系统转速估计的原理和结构,利用Popov超稳定理论推导出估计系统的自适应律。在MRAS转速估计的基础上,利用DRNN对MRAS转速估计系统中的PI参数进行动态在线整定,得到基于DRNN-MRAS的新型转速估计系统。仿真和实验结果验证了新型DRNN-MRAS算法的有效性和实用性。The PI parameters set in advance under complex conditions can not meet the new operating status of the motor,then a speed estimator based on diagonal recurrent neural network(DRNN)PI parameter dynamic selftuning was designed for this problem,and the PI parameters were dynamic self-tuning to improve system robustness and estimation accuracy. The principle and structure of speed estimation based on model reference adaptive system(MRAS)were analyzed,and the adaptive law of the estimation system was deduced by Popov hyperstability theory. On the basis of MRAS speed estimation,the PI parameters in MRAS speed estimation system were dynamically adjusted by DRNN,then the new speed estimation system based on DRNN-MRAS was obtained. Simulation and experimental results verify the effectiveness and practicability of the new DRNN-MRAS algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.252.203