基于主成分分析的热图像序列盲源分离  被引量:4

Blind Source Separation of Thermal Image Sequences Using Principal Component Analysis

在线阅读下载全文

作  者:徐超[1] 冯辅周[1] 闵庆旭[1] 孙吉伟[1] 朱俊臻[1] 

机构地区:[1]装甲兵工程学院机械工程系,北京100072

出  处:《红外技术》2017年第11期1018-1023,共6页Infrared Technology

基  金:军队科研项目

摘  要:在涡流脉冲热像技术中,高频涡流瞬时加热被测物体时,不同区域的热响应会发生混叠现象,这势必影响缺陷区域热响应信号的判别。本文以红外图像序列为观测信号,建立热响应信号的混叠模型;其次,利用不同区域的热响应彼此独立的特点,开展了基于主成分分析的盲源分离数据处理方法研究;最后,建立仿真模型研究了不同区域的热响应形态,采用了基于混叠向量和峰度系数定量分析主成分强化的区域。实验结果表明该方法能够实现不同生热区域的盲源分离,为缺陷的特征提取和识别提供了理论支撑。In eddy current pulse thermography, test specimens are heated instantaneously by a high-frequency eddy current, and the thermal response of different region aliasing occurs, which inevitably affects the identification of the thermal response of a defect area. In this paper, a blind source separation model is developed that takes the thermal response as an observation,. Since the responses of different areas are independent, principal component analysis is employed to separate data. Then, a simulation model is es- tablished to study the thermal responses of different regions. Based on this model, we propose a method of identifying enhancement regions using principal components based on an aliasing vector and kurtosis coeffi- cient. Experimental results show that the method can separate the principal components that describe differ- ent heating areas. This result provides theoretical support for the feature extraction and automatic identifica- tion of defects.

关 键 词:涡流脉冲热像 盲源分离 主成分分析 热响应 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象