检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山大学中法核工程与技术学院,珠海519082
出 处:《计算数学》2017年第4期431-444,共14页Mathematica Numerica Sinica
基 金:NSFC-广东联合基金超级计算科学应用专项项目(20144500031650003)
摘 要:基于求解偏微分方程的高保真数值模拟已经广泛应用于科学研究和工程设计.然而,即使借助超级计算机的并行计算能力,经典的有限元方法和其它数值方法在面对需要多次求解或需要快速甚至实时求解的问题时仍然面临效率的挑战.针对可用参数化微分方程表示的问题,缩减基有限元方法利用少数代表性的经典有限元解构造基函数,同时通过仿射分解使得系统矩阵和载荷向量的组装变为简单的代数叠加,因此该方法可以大幅度地提高这类问题的求解效率.本文介绍了这种方法的原理,并以固体热传导和中子扩散的快速求解为例,展示了这种方法的优良特性.结果表明,在线阶段的求解效率可以实现两到三个数量级的提升.基于高保真模拟的缩减基模型是将高性能计算应用于工程优化设计、应急指挥以及复杂问题的反分析等工作的有效手段.High-fidelity simulation based on numerical solution of governing partial differential e- quations has been widely applied in scientific research and engineering design. However, even by exploiting the modern high-performance computation, fast solution is still a challenging task when the simulations have to be run many times such as in optimization problems or in nonlinear coupling problems. For the class of problems which can be described by parametrized partial differential equations, the reduced basis finite element constructs the basis functions on top of typical high-fidelity solutions and thus greatly reduces the number of unknowns. The principles of the method is introduced in the present study and the favorable features are demonstrated through solving the heat conduction problem and the neutron diffusion problem. It is shown a speedup of three orders of magnitude is achieved during the online stage.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145