基于粒子群算法的摄像机内参数优化方法  被引量:11

Optimization of Camera Internal Parameters Based on Particle Swarm Algorithm

在线阅读下载全文

作  者:郭彤颖[1] 李宁宁 刘雍 

机构地区:[1]沈阳建筑大学信息与控制工程学院,辽宁沈阳110168

出  处:《激光与光电子学进展》2017年第11期314-319,共6页Laser & Optoelectronics Progress

摘  要:针对MATLAB标定工具箱的标定精度与所拍图像数量成正比的问题,即拍摄照片数量越多标定精度越高,提出了一种基于粒子群算法的摄像机内参数优化方法,从而达到拍摄少量图片也可以有较好精度的效果。首先摄像机从不同角度拍摄4张和20张标定板图片,利用MATLAB标定工具箱分别求取它们的内参数。然后根据标定点的实际坐标和反投影坐标建立目标函数,再由粒子群算法对标定箱求取的内参数进行优化。实验结果对比表明:与MATLAB标定工具箱相比,此方法能够在一定程度上提高少量标定板图片的标定精度。Aiming at the problem that the calibration accuracy of MATLAB calibration toolbox is proportional to the number of images taken, which means the larger the number of photo frames, the higher the calibration accuracy. A method of internal parameter optimization based on particle swarm algorithm is proposed, and the better effects can be achieved with few pictures. First the camera shoots 4 and 20 calibration plate pictures in different angles, and their internal parameters are obtained with the use of MATLAB calibration toolbox. The objective function is established through the calibration point of the actual coordinates and the back projection coordinates, and then the internal parameters obtained by calibration box are optimized by the particle swarm algorithm. The experimental results show that this method can improve the calibration accuracy of a small number of calibration plate pictures to a certain extent compared with the MATLAB calibration toolbox.

关 键 词:机器视觉 摄像机标定 粒子群优化 摄像机模型 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象