基于改进HHT和马氏距离的齿轮故障诊断  被引量:10

Gear fault diagnosis based on improved HHT and Mahalanobis distance

在线阅读下载全文

作  者:周小龙[1] 刘薇娜[1] 姜振海[2] 马风雷[2] 

机构地区:[1]长春理工大学机电工程学院,长春130022 [2]长春工业大学机电工程学院,长春130012

出  处:《振动与冲击》2017年第22期218-224,共7页Journal of Vibration and Shock

基  金:国家自然科学基金资助项目(51075041);吉林省教育厅科技发展项目(2014124)

摘  要:针对齿轮振动信号非线性和非平稳的特点,提出一种基于改进希尔伯特-黄变换与马氏距离相结合的故障诊断方法。利用自适应白噪声的完备经验模态分解将齿轮振动信号分解成一系列固有模态函数,并采用敏感固有模态函数判别算法判断出对故障信息敏感的模态函数;通过对敏感固有模态分量的局部希尔伯特瞬时能量谱的分析,得出信号能量随时间变化的精确表达;以不同故障信号局部希尔伯特瞬时能量谱的最大峰值作为特征向量,采用马氏距离对齿轮故障进行状态识别。试验结果表明,该方法可有效识提取齿轮故障特征,实现不同故障状态识别。In view of nonlinear and non-stationary characteristics of gear vibration signals,a fault diagnosis method based on improved Hilbert-Huang transform and Mahalanobis distance was proposed. The gear vibration signals were decomposed by complete ensemble empirical mode decomposition with adaptive noise,the intrinsic mode functions were obtained and sensitive intrinsic mode functions were selected by the sensitivity evaluation method. Then,the local Hilbert instantaneous energy spectrum of the sensitive intrinsic mode components was analyzed,and the fault information can be extracted from the distribution of the energy of the gear vibration signal with the change of time. Finally,the maximum peak value of the local Hilbert instantaneous energy spectrum was treated as the fault features and the Mahalanobis distance method was used for judging the gear fault. Experimental results show that the method can effectively extract gear fault features and apply for different fault identification.

关 键 词:齿轮 自适应白噪声完备经验模态分解 瞬时能量谱 马氏距离 故障诊断 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象