基于多特征序列融合的负荷辨识方法  被引量:29

Load Identification Method Based on Multi-feature Sequence Fusion

在线阅读下载全文

作  者:杨东升[1] 孔亮 胡博 苑婷[3] 

机构地区:[1]东北大学信息科学与工程学院,辽宁省沈阳市110819 [2]国网葫芦岛供电公司,辽宁省葫芦岛市125000 [3]国网盘锦供电公司,辽宁省盘锦市124010

出  处:《电力系统自动化》2017年第22期66-73,共8页Automation of Electric Power Systems

基  金:国家自然科学基金资助项目(61273029);中央高校基本科研业务费专项资金资助项目(N160402003);新能源电力系统国家重点实验室立项资助项目(LAPS17013)~~

摘  要:针对当前利用低频采样实现非侵入式负荷辨识存在的准确率低的问题,提出了基于多特征序列融合的负荷辨识方法。该方法首先建立负荷存在可能性的整数规划模型,进行初辨识以降低负荷辨识的维度。然后,根据滑动窗口算法获得组合功率序列和原始功率序列,提取其统计特征和奇异值特征,进而利用概率神经网络获得隐马尔可夫模型的观测值序列。同时,利用隐马尔可夫模型对负荷序列信息进行融合,计算观测序列和组合功率序列之间的相似度,从而完成在低频采样下的负荷辨识,并获得各个家用负荷的耗电量。最后,通过单负荷辨识、多负荷辨识、不同采样率辨识和各居民用户负荷辨识的仿真实验,得到负荷准确率和辨识精度的平均值均在85%以上,证明了所提算法的合理性和即时性能够达到在低频采样下负荷的辨识要求。Aiming at the problem of low recognition accuracy for non-intrusive load identification method at the low sampling rate,a load identification method based on multi-feature sequence fusion is proposed.First,an integer programming model is developed to solve the possibility of load existence,thus reducing the dimensions of load identification process.According to the sliding window method,the combined power sequence and the original power sequence are obtained,from which the statistical characteristic value and the contour singular value are extracted.Then the probabilistic neural network(PNN)is used to obtain the observed sequence of the hidden Markov model(HMM).Meanwhile,the information of load sequence is fused by HMM,and the similarity between the observed sequence and the combined power sequence is calculated.Thus the load identification at a low sampling rate is completed and the power consumption of each household load is obtained.Finally,through the simulation experiments of single load identification,multi-load identification,load identification with different sampling rates and load identification of each user,the average results of the load accuracy and the identification accuracy are more than 85%,which has verified that the rationality and immediacy of the proposed method can meet the requirement of load identification at the low sampling rate.

关 键 词:负荷辨识 整数规划 概率神经网络 隐马尔可夫模型 

分 类 号:TM714[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象