基于小波包熵的天然气管道阀门内漏分析方法  被引量:6

A new analysis method for the internal leakage of gas pipeline valves based on wavelet packet entropy

在线阅读下载全文

作  者:张海峰[1] 杨淼 张一峰 王雪莉[1] 王建伟 李东阳[1] 

机构地区:[1]中国石油管道科技研究中心/油气管道输送安全国家工程实验室 [2]中国石油管道公司锦郑管道运行筹备组

出  处:《油气储运》2017年第11期1308-1314,共7页Oil & Gas Storage and Transportation

基  金:中国石油天然气股份公司科技专项"油气管道关键设备国产化";2012E-2802

摘  要:为了解决严重威胁天然气管道运行安全的阀门内漏问题,采用小波包分解和信息熵理论相结合的方法对3 in(1 in=25.4 mm)球阀不同内漏程度下的声发射信号特征进行分析。首先,通过搭建阀门内漏声发射检测试验平台开展不同内漏流量下声发射检测试验;其次,应用小波包熵方法对声发射信号各频率段信息度进行分析;最后,采用均方根值评价参数对不同频带内小波包熵值与内漏流量的相关性进行评价。结果表明:在25~37.5 kHz频带内的小波包熵值与阀门内漏流量具有最大相关性(均方根误差为0.012 6),表明小波包熵分析方法是一种输气管道阀门内漏流量量化检测的新方法。It is in urgent need to solve the internal leakage of valves for it threatens the operation safety of natural gas pipelines. In this paper, a novel approach which combines wavelet packet decomposition and information entropy theory was developed to analyze the characteristics of acoustic emission signal of 3 in ( 1 in=25.4mm) ball valve with different internal leakage levels. Firstly, the experiment platform used for the acoustic emission detection of valve internal leakage is built up to perform acoustic emission detection tests at different internal leakage rates. Then, the informativity of each frequency band of the acoustic emission signal is analyzed by means of the wavelet packet entropy method. And finally, the correlation between the wavelet packet entropy and the internal leakage rate in different frequency bands is evaluated by using root mean square (RMS) value as the evaluation parameter. It is indicated that the correlation between the wavelet packet entropy and the internal leakage rate is the highest (RMS error is 0.012 6) in the frequency band of 25-37.5 kHz. To sum up, this wavelet packet entropy analysis method is a new method to detect quantitatively the internal leakage rate of gas pipeline valves.

关 键 词:小波包熵 天然气管道 阀门 特征提取 声发射 

分 类 号:TE88[石油与天然气工程—油气储运工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象