检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学学报(中文版)》2017年第6期947-954,共8页Acta Mathematica Sinica:Chinese Series
基 金:国家自然科学基金资助项目(11271204;11671216)
摘 要:证明了体积增长不低于5次多项式的拟顶点可迁图上的简单随机游走几乎处处有无穷多个切割时,从而有无穷多个切割点.该结论在所论情形下肯定了Benjamini,Gurel-Gurevich和Schramm在文[2011,Cutpoints and resistance of random walk paths,Ann.Probab.,39(3):1122-1136]中提出的猜想:顶点可迁图上暂留简单随机游走几乎处处有无穷多个切割点.We prove that a simple random walk on quasi-transitive graphs with the volume growth being at least as fast as a polynomial of degree 5 has a.s. infinitely many cut times, and hence infinitely many cutpoints. This confirms a conjecture raised by Benjamini, Gurel-Gurevich and Schramm [2011, Cutpoints and resistance of random walk paths, Ann. Probab., 39(3): 1122-1136] that PATH of a simple random walk on any transient vertex-transitive graph has a.s. infinitely many cutpoints in the corresponding case.
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222