检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电子王程系,北京100084 [2]北京工业大学计算机学院,北京100124
出 处:《自动化学报》2017年第11期1908-1919,共12页Acta Automatica Sinica
基 金:国家自然科学基金(61501008);首都卫生发展科研专项(2014-2-4025)资助~~
摘 要:图像盲解卷积研究当模糊核未知时,如何从模糊图像复原出原始清晰图像.由于盲解卷积是一个欠定问题,现有的盲解卷积算法都直接或间接地利用各种先验知识.本文提出了一种结合稀疏表示与结构自相似性的单幅图像盲解卷积算法,该算法将图像的稀疏性先验和结构自相似性先验作为正则化约束加入到图像盲解卷积的目标函数中,并利用图像不同尺度间的结构自相似性,将观测模糊图像的降采样图像作为稀疏表示字典的训练样本,保证清晰图像在该字典下的稀疏性.最后利用交替求解的方式估计模糊核和清晰图像.模拟和真实数据上的实验表明本文算法能够准确估计模糊核,复原清晰的图像边缘,并具有很好的鲁棒性.Blind image deconvolution aims to recover the latent sharp image from a blurry image when the blur kernel is unknown. Since blind deconvolution is an underdetermined problem, existing methods take advantage of various prior knowledge directly or indirectly. In this article, we propose a single image blind deconvolution method based on sparse representation and structural self-similarity. In our method, we add the image sparsity prior and structural self-similarity prior to the blind deconvolution objective function as regularization constraints, and we utilize the structural self-similarity between different image scales by taking the down-sampled version of observed blurry image as the sparse representation dictionary training set so that the sparsity of the latent sharp image under this dictionary can be ensured. Finally, we estimate the blur kernel and sharp image alternately. Experimental results on both simulated and real blurry images demonstrate that the blur kernels estimated by our method are accurate and robust, and that the restored images have high visual quality with sharp edges.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.82.248