关于两族拟Lipschitz映像的非凸混杂算法  

Non-convex Hybrid Algorithm for Two Families of Quasi-Lipschitz Mappings

在线阅读下载全文

作  者:高兴慧[1] 宋欣欣 王晶 刘思璇 许怡 刘婷 

机构地区:[1]延安大学数学与计算机科学学院,陕西延安716000

出  处:《重庆师范大学学报(自然科学版)》2017年第6期61-64,共4页Journal of Chongqing Normal University:Natural Science

基  金:国家自然科学基金(No.11071053);陕西省自然科学基础研究计划项目(No.2016JM6082);延安大学校级科研引导项目(No.YD2016-12);2016年国家级大学生创新训练计划项目(No.201610719002);2016年陕西省大学生创新训练计划项目(No.1496)

摘  要:【目的】研究两族渐近拟Lipschitz映像的公共不动点的迭代方法以及强收敛性的证明。【方法】利用构造凸闭集的方法和投影算子的定义和性质等技巧。【结果】首先,在Hilbert空间中,构造出一种新的关于两族渐近拟Lipschitz映像的公共不动点的非凸混杂投影算法,其次,利用构造凸闭集的方法证明了该算法的强收敛性。【结论】所得结论是最新文献相关结论之推广。[Purposes]The purpose is to study itarative methods and proofs of strong convergence of common fixed points for two families of asymptotically quasi-Lipschitz mappings in Hilbert spaces.The strong convergence of the proposed algorithm is proved by the method of constructing concex and closed sets.The results presented here improve and extend the corresponding ones announced by many others.[Methods]The method of constructing concex and closed sets and the definition and properties of projective operator are used.[Findings]First,a kind of new non-convex hybrid algorithms of common fixed points is established for two families of asymptotically quasi-Lipschitz mappings in Hilbert spaces.Second,the strong convergence of the proposed algorithm is proved by the method of constructing concex and closed sets.[Conclusions]The results presented here improve and extend the corresponding ones announced by many others.

关 键 词:拟Lipschitz映像族 非凸混杂算法 强收敛性 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象