检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]诸暨市联系数学研究所,浙江诸暨311811 [2]浙江大学非传统安全与和平发展研究中心,浙江杭州310058
出 处:《智能系统学报》2017年第5期608-615,共8页CAAI Transactions on Intelligent Systems
基 金:国家社科基金重大项目(12&ZD099)
摘 要:针对概率论发展史上合理分配赌本问题,把赵森烽-克勤概率用于合理分配赌本需要的最少赌博次数研究,结果发现,该问题中基于经典概率得出的数学期望不会在实际中出现,实际中出现的是基于赵森烽-克勤概率的"数学期望"的两个极端值。利用赵森烽-克勤概率能客观地反映出给定规则下最少赌博次数与最多赌博次数时的赌博结果,同时刻画出赌博输赢的经典期望值和实际值,从而为有针对性地制定或修改赌博策略和合理地分配赌本提供依据,在此基础上给出期望值不确定定理。文中以机器人服务收费为例说明该定理的现实意义。With respect to the reasonable distribution of gambling capital in the developmental history of probability theory,Zhao Senfeng-Keqin probability has been used to investigate the minimum number of gambling times necessary for the rational allocation of the minimum amount of gambling capital. Results have shown that the mathematical expectation for this problem,based on classical probability,failed to occur in practice. What appeared instead are two extreme values of "mathematical expectation " based on the Zhao Senfeng-Keqin probability,which can objectively reflect the gambling results within the smallest and largest number of gambling times for a given rule. In addition,it describes both the classic expectation value and the actual value,thereby providing a basis for formulating or amending specific gambling tactics and the reasonable allocation of gambling capital. The result is an uncertainty theorem for the expectation value. In this paper,we illustrate the practical significance of this theorem by giving an example of service charging on a robot.
关 键 词:赌本分配 数学期望 赵森烽-克勤概率(联系概率) 不确定性 期望值定理
分 类 号:O211[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28