检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《洛阳理工学院学报(自然科学版)》2017年第4期60-64,共5页Journal of Luoyang Institute of Science and Technology:Natural Science Edition
摘 要:针对基于蚁群觅食原理的聚类算法初期收敛速度较慢的问题,以及未区分各维特征主次的缺陷,本文提出了一种两阶段蚁群聚类算法,以解决上述问题。第一阶段引入各只蚂蚁的实时信息素更新规则改善算法初期收敛速度较慢问题,并为第二阶段提供合理的初始隶属度矩阵;第二阶段利用隶属度矩阵自适应地赋予各维特征不同的权重,再用信息素强度和加权欧氏距离共同指导各只蚂蚁构造解。经过人工数据集和UCI数据集的测试,结果表明两阶段蚁群聚类算法可以加快算法初期收敛速度,同时提高聚类的准确率。Focusing on the problem, which the clustering algorithm based on ant colony foraging principle of convergence may be slow in the initial stage, and the defects not distinguishing the various features of primary and secondary, this paper presents a two-stage ant colony clustering algorithm to solve the problems mentioned above. The first stage of algorithm which introduces the ant real-time initial pheromone update rule to improve the problem of low convergence speed in early algorithm, the second stage of algorithm, guiding the ants structural solution by the membership matrix to adaptively endow the reasonable feature weight of each dimension, as well as the pheromone intensity and weighted Euclidean distance . Through the test on artificial data set and UCI data sets, the results show that the t',~o-stage ant colony clustering algorithm can ~mprove the convergence speed in early algorithm, mean while, improve the accuracy of clustering.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.230.234