忆阻器混沌电路产生的共存吸引子与Hopf分岔  被引量:8

Coexisting Attractors and Hopf Bifurcation in Floating Memristors Based Chaotic Circuit

在线阅读下载全文

作  者:王伟 曾以成 陈争 孙睿婷 

机构地区:[1]湘潭大学物理与光电工程学院 [2]75714部队

出  处:《计算物理》2017年第6期747-756,共10页Chinese Journal of Computational Physics

基  金:国家自然科学基金(61471310)资助项目

摘  要:利用荷控忆阻器和一个电感串联设计一种新型浮地忆阻混沌电路.用常规动力学分析方法研究该系统的基本动力学特性,发现系统可以产生一对关于原点对称的"心"型吸引子.将观察混沌吸引子时关注的电压、电流推广到功率和能量信号,观察到蝴蝶结型奇怪吸引子的产生.理论分析Hopf分岔行为并通过数值仿真进行验证,结果表明系统随电路参数变化能产生Hopf分岔、反倍周期分岔两种分岔行为.相对于其它忆阻混沌电路该电路采用的是一个浮地型忆阻器,并且在初始状态改变时,能产生共存吸引子和混沌吸引子与周期极限环共存现象.We propose a novel floating memristor chaotic circuit with serial connection between a charge-controlled memristor and an inductor.Basic dynamic properties of the system are investigated with conventional dynamic analysis method.It shows that the system produces a pair of "heart" type attractors about origin symmetry.Simulation results indicate that strange attractors like bow tie type are observed as voltage and electricity signal in observing chaotic attractors are generalized to power and energy signal.Hopf bifurcation behavior is analyzed and verified by numerical simulation.It shows that the system can produce two bifurcation behaviors by adjusting parameters.They are Hopf bifurcation and anti-period doubling bifurcation.Remarkable feature of the citcuit is that it adopts a floating memristor,and with different initial state it generates nonlinear phenomena including coexisting chaotic and coexisting chaotic-periodic attractors.

关 键 词:荷控忆阻器 混沌电路 动力学 HOPF分岔 共存吸引子 

分 类 号:O415.5[理学—理论物理] O545[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象