检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《环境科学学报》2017年第12期4787-4797,共11页Acta Scientiae Circumstantiae
基 金:国家自然科学基金(No.51278057);霍英东教育基金(No.151075)~~
摘 要:为减少交通运输二氧化碳排放量,采用ESDA方法对交通运输碳排放时空分布格局进行研究,同时考虑了空间联系作用,构建GWR模型对碳排放影响因素进行时空差异分析.研究发现:(1)2000—2013年中国省域交通碳排放空间聚类特征随时间变化不大,存在显著的高值、低值聚类特征.京津冀地区、辽宁、山东、山西、陕西、河南地区为高值聚类区,新疆、青海地区一直处于低值聚类区.(2)碳排放影响因素在相邻地区差异较小.其中城镇化率、交通运输结构为主要推动因素,能源强度则起到关键抑制作用.应对碳排放聚类区域施行协同减排目标,同时,应根据因素影响作用差异,分区域制定针对性减排政策.In order to decrease transportation carbon emission,ESDA is used to study the spatio-temporal distribution of transportation carbon emission,and GWR model is built to analyze spatio-temporal difference among provinces of transportation carbon emission influencing factors. The results show that:(1)In 2000—2013,the spatial cluster characteristics of transportation carbon emission in China were comparatively stable,and there were significant high and low-value cluster characteristics in provinces. Beijing-Tianjin-Hebei Region,Liaoning,Shandong,Shanxi,Shaanxi,Henan were in high-value cluster areas,and Xinjiang,Qinghai were in low-value cluster areas.(2) There was relatively small difference among influencing factors in adjacent provinces.Urbanization and transportation structure were the main influencing factors,and energy intensity played a key negative role in carbon emission. It is suggested government should implement the coordinated emission reduction plans in specific cluster areas. Meanwhile,according to the difference among provinces of influencing factors,the government should formulate targeted emission reduction policies in different regions.
关 键 词:交通运输碳排放 影响因素 时空差异 ESDA GWR
分 类 号:X196[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.83.171