检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金秀明 李勇[1] 姚桂生 龙梦龙[1] 秦海霞[1] 马晨红 孙加林[1]
机构地区:[1]北京科技大学材料科学与工程学院,北京100083
出 处:《硅酸盐学报》2017年第12期1853-1859,共7页Journal of The Chinese Ceramic Society
基 金:江苏省科技厅重点发展计划(BE2016043)资助
摘 要:以硅粉和氮化硅铁颗粒为原料,经高纯氮气气氛下烧结,制备出氮化硅/氮化硅铁复合材料。将氮化硅/氮化硅铁复合材料试样分别在1 500、1 600、1 700℃氮气气氛下重烧,探究其高温稳定性。结果表明:当重烧温度为1 500℃时试样中存在的物相有β-Si_3N_4、α-Si_3N_4、Si_2N_2O、SiC以及Fe3Si;当重烧温度达到1 600℃时,β-Si_3N_4含量增加,Fe_3Si、Fe_5Si_3、FeSi_3种硅铁合金共存,α-Si_3N_4、Si_2N_2O消失;当重烧温度上升到1 700℃时,β-Si_3N_4含量显著下降并重新出现α-Si_3N_4,Fe_5Si_3和FeSi相共存,Fe_3Si相消失。结合热力学计算推断反应机理为:当重烧温度从1 500℃上升到1 600℃时,α-Si_3N_4、Fe–Si熔体中的Si以及Si_2N_2O均向β-Si_3N_4转变,导致β-Si_3N_4含量增加。当重烧温度上升到1 700℃过程中,熔融硅铁的存在加速了Si_3N_4的分解,导致β-Si_3N_4含量减少;试样冷却过程中,Si(l)、Si(g)将重新氮化形成氮化硅,使α-Si_3N_4重新出现。SiC在较高的温度下比Si_3N_4稳定,其反应的C源为结合剂中的残C,以及气氛中的CO。随温度升高,复合材料中Fe–Si合金的稳定顺序依次为:Fe3Si→Fe_5Si_3→FeSi。Si3N4 reaction-boned Fe3 Si–Si3N4 composites were prepared in nitrogen atmosphere using Si and Fe3Si–Si3N4 powders as raw materials. The samples were re-sintered in N2 atmosphere at 1 500, 1 600, and 1 700 ℃, respectively, to explore the high-temperature stability of the material. The phase compositions and microstructures were characterized by X-ray diffraction and scanning electron microscopy. The results show that the main phases are β-Si3N4, α-Si3N4, Si2N2O, SiC and Fe3Si for the specimen re-sintered at 1 500 ℃. The content of β-Si3N4 increases, three kinds of antacirons(Fe3Si,Fe5Si3 and FeSi) coexist, α-Si3N4 and Si2N2O disappear when the re-sintered temperature increases to 1 600 ℃. As the re-sintered temperature increases to 1 700 ℃, the content of β-Si3N4 decreases significantly, the α-Si3N4 reappear, and the antacirons contain only Fe5Si3 and Fe Si. The reaction mechanism can be deduced. As the re-sintered temperature increases from 1 500 to 1 600 ℃, α-Si3N4, Si in the liquid Fe–Si alloy and Si2N2O transform to β-Si3N4. As the re-sintered temperature increases to 1 700 ℃, the melted antacirons accelerate the decomposion of Si3N4, leading to the decrease of β-Si3N4. α-Si3N4 is formed during the cooling process due to the reactions between Si(l,g) and N2. SiC is more stable than Si3N4 at elevated temperatures. The carbon source for SiC is residual carbon from dextrin. The stable phase of Fe–Si alloy in the composite is Fe3Si→Fe5Si3→Fe Si when with the temperature increases.
分 类 号:TQ175[化学工程—硅酸盐工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.239.109