检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江省交通运输厅工程质量监督局,浙江杭州310009 [2]江苏省地下空间探测技术工程实验室,江苏南京211112 [3]苏交科集团股份有限公司,江苏南京211112
出 处:《现代交通技术》2017年第4期10-12,17,共4页Modern Transportation Technology
摘 要:基于逐步回归分析法,建立了考虑时效、降雨等因素的边坡变形预测模型。提出了拟合曲线和预测曲线的双精度判别标准,从样本区间、预测时长、数据频率3个方面开展预测方法的可靠度分析,提出基于逐步回归分析法预测公路高边坡变形的适用性原则,验证优化了预测方法。依托工程的应用结果表明,文章提出的预测方法和精度判别标准等具有良好的适用性,为快捷、高效地预测公路高边坡变形发展趋势提供了有效的分析方法和。The predicting model of slope deformation was established based on the stepwise regression analysis method,considerring the factors such as aging and rainfall. Fitted curve and predication chart were set as the double precisioncriteria. It focused on the reliability analysis of predicting models from three aspects,including sample range,predictionduration and data frequency. Principles of applicability of predicting highway slope deformation were identified based onthe stepwise regression analysis method,and the predicting method had been verified and improved. The applicationresults of experimental projects showed that predicting methods and precision criteria in this essay had goodapplicability,which contributed to the efficient and fast prediction of highway high slope trends.
分 类 号:U416.14[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.215