检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《太阳能学报》2017年第11期2909-2915,共7页Acta Energiae Solaris Sinica
基 金:国家重点研发计划(2016YFB0101800);国家电网公司科技项目"电动汽车基础设施运行安全与互联互通技术"
摘 要:光伏出力准确预测是光伏并网安全运行的重要基础,样本容量增大、计及多影响因素能有效提高光伏出力预测精度。以小时段为单位建立一种基于样本扩张灰色关联分析的光伏发电短期出力预测模型,扩张有限的样本容量,能分析多因素影响。首先分析影响光伏出力的多种因素,通过灰色关联度分析的方法对样本进行分析,得到扩张最优相似小时段样本;通过遗传算法对BP神经网络的权值和阈值进行优化,并对神经网络进行训练;最后进行光伏出力预测。该文所建立的预测模型有效扩张了样本容量,提高了突变天气时预测准确度,有一定应用价值。It is important to forecast PV short-term output accurately for the safety of grid operation with PV. Theincreases of sample number and multiple factors considered can improve the accuracy of prediction of PV outputeffectively. A PV short-term output forecast based on grey correlation analysis with expanded sample is proposed in formof hours,which expands the limited sample size and considers multiple factors. The best samples are chosen by analyzingsamples from the period of time to be predicted and samples to be trained through grey correlation analysis. A BP neuralnetwork,whose weight and threshold are optimized by genetic algorithm,is trained by using best samples. At last theoutput is predicted and compared with traditional forecast method. The results showed that the method proposed in thispaper not only expands the sample number,but also improves the forecast accuracy when climatic jump happens,whichhas some value for application.
关 键 词:灰色关联度分析 样本扩张 突变天气情况 光伏发电 功率预测
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.60.240