检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学江苏省太阳能技术重点实验室,南京210096 [2]南京索乐优节能科技有限公司,南京210046 [3]南瑞太阳能科技有限公司,南京210018
出 处:《太阳能学报》2017年第11期3029-3035,共7页Acta Energiae Solaris Sinica
基 金:江苏省科技支撑计划(BE2013121);中芬国际合作光伏光热一体化项目;国家自然科学基金(51476099)
摘 要:在槽式抛物面太阳集热器的热性能研究中,数据往往具有随机性、非线性和不确定性等特点,采用传统建模方法经常做出大量假设,导致仿真精度不高且复杂。以槽式抛物面太阳集热器为研究对象,将传统理论模型与BP人工神经网络相互耦合,通过集热器热性能室外动态试验,建立工质出口温度的神经网络预测校正模型。引入Levenberg-Marquardt(LM)法对BP神经网络的权值及阈值进行优化。分析结果表明,预测校正模型可将绝对误差控制在3.8℃以内,相对误差保持在3.6%以内,可有效提高槽式抛物面太阳集热器热性能的仿真模型计算精度。In the study of thermal performance of parabolic trough solar collector(PTC),the data are often random,nonlinear and uncertain. Besides,since large amounts of assumption are involved in the traditional modeling methods,the outcomes are often inaccurate and intricate. Therefore,a predictive correction model were established to predict exitfluid temperature. The model was constructed by coupling the traditional model with BP neural network,and dynamicoutdoor thermal performance tests were performed. The Levenberg-Marquardt(LM)method was also applied to optimizethe weights and thresholds for the classic BP Newton algorithm. The results revealed that the absolute error of thepredictive correction model was under 3.8 ℃ and the relative error was lower than 3.6%,which suggested that thepredictive correction ANN model has a higher accuracy. It also indicated a lower complexity in calculation.
关 键 词:槽形抛物面集热器 BP神经网络 预测校正模型 工质出口温度
分 类 号:TK513[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44