基于类Haar特征和最近邻分类器的车辆检测  被引量:1

在线阅读下载全文

作  者:周莹 于晓艳[1] 

机构地区:[1]哈尔滨师范大学物理与电子工程学院,黑龙江省哈尔滨市150025

出  处:《电子技术与软件工程》2017年第24期76-78,共3页ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING

基  金:国家自然科学基金(61401127)

摘  要:针对传统车辆检测方法计算复杂和误检率高的问题,提出了一种基于类Haar图像特征描述的车辆检测方法。首先,建立特征向量库,利用类Haar特征对训练样本进行特征提取。然后,提取待检测图像的子图像特征信息。最后,最近邻分类器利用特征向量库对待识别的子图像进行车辆存在性检测。利用积分图像的概念对图像进行描述,大幅度提高了特征提取速度。此外,分析了不同数量的类Haar特征对检测效果的影响。实验结果表明,该方法能大幅降低误检率,获得较高的查准率,对日间自然光条件下的车辆有较好的检测效果。

关 键 词:Haar-like 积分图像 最近邻 车辆检测 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] U495[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象