检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴永存
出 处:《控制工程》2017年第12期2539-2543,共5页Control Engineering of China
摘 要:在贝叶斯极限学习机中,模型隐层节点数的确定尚无理论依据,一种基于多响应稀疏回归方法(Multiresponse Sparse Regression,MRSR)的隐层节点数稀疏方法由此被提出。首先根据传统神经网络确定隐层节点数的经验方法设定模型的隐层节点数为区间范围的上限,然后利用MRSR方法对模型输出矩阵和标签向量进行稀疏性回归分析求解,最后能得到一个既能对隐层节点数进行稀疏也能对样本个数进行稀疏的贝叶斯极限学习机模型。仿真结果表明该方法在满足精度要求的前提下能剔除冗余的隐层节点,进一步实现了模型的稀疏性。Considering the fact that there is no theory for the determination of hidden layer nodes in Bayesian extreme learning machine, this paper proposes a method of sparse hidden layer nodes based on multiresponse sparse regression. First, the hidden layer nodes are set to the upper limit of the interval range determined by the traditional experience method. Then the sparse regression between the model output matrix and the target vector is solved by MRSR. At last, we can get a sparse model for both the hidden layer nodes and training samples. The simulation results show that the method can prune the redundant nodes without sacrificing the model accuracy, which further achieves model sparsity.
关 键 词:贝叶斯极限学习机 隐层节点数 多响应稀疏回归方法 BAYESIAN EXTREME learning machine (BELM)
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117