基于多模型高斯过程回归的肺部四维计算机断层扫描超分辨率重建  被引量:2

Super-resolution reconstruction for lung four dimensional computed tomography images using multi-model Gaussian process regression

在线阅读下载全文

作  者:房诗婷 钟涛 陈瑾[1,2] 张煜 

机构地区:[1]南方医科大学生物医学工程学院,广州510515 [2]广东省医学图像重点实验室,广州510515

出  处:《生物医学工程学杂志》2017年第6期922-927,共6页Journal of Biomedical Engineering

基  金:国家自然科学基金(31271067;61671230);广东省科技计划项目(2017A020211012);广州市科技计划项目(201607010097);广东省医学图像重点实验室项目(2014B030301042)

摘  要:肺部四维计算机断层扫描(4D-CT)能引导精确放疗,然而出于对患者安全性的考虑,4D-CT扫描间距不能太小,以至于图像的上下层间分辨率过低,因此图像冠、矢状面需要插值才能得到高分辨率图像。本文提出了一种基于多模型高斯过程回归的超分辨率重建技术,该方法利用高分辨率的横截面及对应的低分辨率图像作为训练集,通过构造多个高斯过程回归模型,预测出冠、矢状面的高分辨率像素点。实验结果表明,本文方法在边缘及细节的恢复上都优于双三次插值、凸集投影算法、稀疏表达方法、多相位相似的方法和基于自学习分块的高斯过程回归方法。研究结果表明,本文方法能有效提高肺部4D-CT图像的质量,对实现肺部肿瘤精确的个体化放疗有积极意义。Lung four dimensional computed tomography (4D-CT) can lead to accurate radiotherapy" H^wever' for the safety of patients, the scan spacing of 4D-CT cannot be too small so that the inter-slice resolution of lung 4D-CT is low, and thus the coronal and sagittal images need to be interpolated to obtain high-resolution images. This paper presents a super-resolution reconstruction technique based on multi-model Gaussian process regression. We use the high- resolution transversal images and the corresponding low-resolution images as the training sets. The high-resolution pixels of the coronal and sagittal images can be predicted by constructing multiple Gaussian process regression models. The experimental results show that our method is superior to bicubic algorithm, projections onto convex sets, sparse coding, multi-phase similarity based method and Gaussian process regression method based on self-learning block in terms of the edge and detail recovery. The results demonstrate that the proposed method can effectively improve the quality of lung 4D-CT images, and potentially be applied to better image-guided radiation therapy of lung cancer.

关 键 词:肺部四维计算机断层扫描 超分辨率重建 高斯过程回归 

分 类 号:R734.2[医药卫生—肿瘤] TP391.41[医药卫生—临床医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象