检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学数学科学学院,上海200240 [2]Department of Mathematics,Kansas State University
出 处:《中国科学:数学》2017年第11期1579-1594,共16页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11371245和11531004)资助项目
摘 要:本文的主要目的是,用范畴的语言对顶点算子代数理论中的一些构造加以解释,同时将Abel范畴工具应用到顶点算子代数的研究中.本文将顶点算子代数范畴中的共形同态放宽为半共形同态,同时讨论半共形同态所对应的模范畴之间的函子性质.这样陪集构造可以实现为Hom函子,并利用Hom函子讨论相关性质.作为一个应用,本文构造了Jacquet函子,并讨论了它的性质.In this paper, we use the language of categories to describe representation theory of vertex operator algebras. The category of all vertex operator algebras and the category of modules of a vertex operator algebra are discussed. A homomorphism between two vertex operator algebras should preserve the Virasoro vectors, which is equivalent to commuting with the operators L(n) for all n ∈ Z. We expand the morphisms of this category so that morphisms are semi-conformal in the sense that they commute with those L(n) with n ≥ 0. This expansion does not change the classification of problem and makes the category into a tensor category. The coset construction becomes more natural in this category and relations between the module categories of vertex operator algebras can be described in terms of Hom-functors. As an application, we also construct the corresponding Jacquet functors. The semi-conformal vertex operator subalgebras plays the role of the Levi subgroups of a reductive group.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222