检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓晨晖[1] 白红英[1] 翟丹平 高山 黄晓月[1] 孟清 贺映娜[1] DENG Chenhui;BAI Hongying;ZHAI Danping;GAO Shan;HUANG Xiaoyue;MENG Qing;HE Yingna(College of Urban and Environmental Science, Northwest University, Xi'an 710127, China;Xi'an Meteorological Bureau,Xi'an 710016, China)
机构地区:[1]西北大学城市与环境学院,西安710127 [2]西安市气象局,西安710016
出 处:《生态学报》2017年第23期7882-7893,共12页Acta Ecologica Sinica
基 金:国家林业公益性行业科研专项(201304309)
摘 要:以1964-2015年物候观测数据为基础,选取17种含乔木、灌木及藤本树种为研究对象,分析探讨了气候变化背景下秦岭地区植物物候变化规律及其差异性。结果表明:(1)52年来,秦岭地区物候始期普遍呈提前趋势,提前速率1.2d/10a,物候末期普遍呈推迟趋势,推迟速率3.5d/10a,物候生长期普遍延长;(2)秦岭地区物候突变发生于20世纪80年代,始期于1985年,末期于1984年。突变后,物候特征发生了显著变化,始期的提前速率较突变前显著加快,末期由突变前的提前趋势转变为极显著的推迟趋势,且变化速率和显著性均高于始期;始期与末期变化均表现出"趋同效应";物候年代际变化趋势显示,始期自2001-2005年起提前速率减缓,植物对气候变化的响应表现出适应性及滞后性。(3)秦岭物候变化存在树种差异,3大类树种始期的提前速率呈藤本、乔木、灌木依次增大,而末期的推迟速率则呈藤本、灌木、乔木依次减小。(4)秦岭物候变化存在南北差异,北坡始期的提前速率均高于南坡,而南坡末期的推迟速率均高于北坡。In the context of global climate change, plant phenology has become the subject of intensive research. Mountains are considered indicators of global climate change. The Qinling mountain region, known as a unique geographical unit in China because of its ecological sensitivity and vulnerability, underwent a significant temperature increase in the last 50 years. Based on phenological data collected from 1964-2015, 17 plant species, including trees, shrubs, and vines, were selected as the subjects of the present study. This paper analyzes and discusses changing conditions and changes in plant phenology in the context of global climate change in the Qinling Mountains. Our analyses generated four primary results. First, over the past 52 years, the beginning of the plant phenophase has advanced at a rate of 1.2 days decade-1, and the end of the plant phenophase has delayed at a rate of 3.5 days decade-1, causing a significant prolongation of the growth period. The primary reason for this prolongation is the rising temperature in the region. There was a inconsistency on the response at the beginning and the end of the phenophase to temperature. Second, the abrupt change of phenophase occurred in the 1980s in Qinling area, the start of phenophase occurred in 1985 andthe end of phenophase did in 1984. After the abrupt change occurs, plant phenological characteristics changed significantly, compared with abrupt change before, showing that the advanced rate in the start of phenophase was faster, and the trend in the end of the phenophase turned into a very significant delay; the rate of change and the significance at the end of the plant phenophase were higher than that at the beginning of the period. These changes in the beginning and end points of plant phenophases manifest as a "convergence effect". Interdecadal variations in phenology indicate that the rate of advance in the beginning of plant phenophases slowed from 2001 to 2005, and that the response of plants to climate change showed qualities of adaptability and
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249