检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾旭波[1] 张永举[1] 张健 吴良成 郭玲[2]
机构地区:[1]江苏省特种设备安全监督检验研究院吴江分院,江苏苏州215200 [2]南京理工大学自动化学院,南京210094
出 处:《计算机测量与控制》2017年第12期247-250,共4页Computer Measurement &Control
基 金:江苏省质监局2016年度科研项目(KJ168357)
摘 要:随着三维测量技术应用领域的逐渐拓宽,点云数据处理技术的需求日益迫切,而多视点点云配准,是其中的基础技术环节;在此针对传统ICP算法鲁棒性差、对迭代初值敏感、计算效率低等缺点,提出一种SIFT算法与阈值筛选相结合的点云配准算法;在参考点云和待配准点云中,通过计算SIFT关键点及各点主曲率,获得初始匹配点集;然后根据相似三角形阈值和法向量夹角阈值,进一步优化点对间的旋转平移关系;实验结果证明,相对于传统算法,改进算法能够以更短的时间来获得准确的配准效果,并且其自动化程度高以及能有效提高点云配准的效率和精度。With widening application of 3D measurement technology, the demand for cloud point data processing technology is becoming more and more urgent, and the multi view point cloud registration is one of the fundamental technologies. A point cloud registration algo- rithm combining SIFT algorithm with threshold selection is proposed to overcome the disadvantages of the traditional ICP algorithm, such as poor robustness, sensitive to iterative initial value and low computational efficiency. Firstly, the initial matching set between the reference point cloud and the point cloud to be registered is obtained by calculating the SIFT key points and their main curvatures~ then rotation and translation between corresponding are optimized based on the similar triangle threshold and the vector angle threshold. Experiments show that, compared with the traditional algorithm, the improved algorithm can achieve accurate registration results in shorter time, and it is high- ly automated and can effectively improve the efficiency and accuracy of point cloud registration.
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118