检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张露[1,2] 王华彬[1,2] 陶亮 周健[1,2] Zhang Lu;Yang Huabin;Tao Liang;Zhou Jian(Key Laboratory of Intelligent Computing and Signal Processing (Anhui University), Ministry of Education, Hefe 230601;Institute of Media Computing, Anhui University,Hefei 230601)
机构地区:[1]计算智能与信号处理教育部重点实验室(安徽大学),合肥230601 [2]安徽大学媒体计算研究所,合肥230601
出 处:《计算机研究与发展》2018年第1期151-162,共12页Journal of Computer Research and Development
基 金:国家自然科学基金项目(61372137;61302191);安徽大学信息保障技术协同创新中心开放课题(ADXXBZ201411);安徽大学大学生科研训练计划项目(KYXL201530)~~
摘 要:匹配分数是传统的融合分数指标,但是其不能很好地区分类内和类间数据,分类置信度虽然可以较好地将类内类间数据分开,但对于匹配分数仅次于分类阈值的数据,其分类效果不是很理想.因此,首先提出了一种基于分类距离分数的融合分数指标,其不仅携带一级分类信息,也含有匹配分数与分类阈值之间的距离信息,可增大融合后类内类间分数之间的距离,为融合算法提供了一个具有有效判别信息的特征融合集,提高了融合指标的利用率;进一步,利用信息熵表示信息价值多少的这一特性,定义特征关联系数和特征权重系数,并将加权融合和传统SUM规则统一在一个自适应算法框架中,提高了融合识别率.实验结果验证了所提出方法的有效性.Matching score is one of the traditional fusion score metrics, but it5s not a good metric to classify the data with intra-class and inter-class scores. The classification confidence score can be used to well separate the data with intra-class score from the data with inter-class score, but it does not work well for the data whose matching scores are next to the classification thresholdpaper proposes a new score metric based on the classification distance score, which contains nothe information of the first level of classification but also the information of the distance between matching score and classification threshold, and which can also increase the distance of the fusionscores between intra-class and inter-class scores, and the classification distance score provides thecharacteristics of effective discriminative information fusion set for fusion algorithm, which can improve the utilization rate of score metric; furthermore, since the information entropy indicates theinformation value of features, it can be used to define the feature correlation coefficient and featureweight coefficient, and then the weighted fusion and traditional SUM rules are unified in an adaptivealgorithm framework, which can improve the fusion recognition rate. The experimental resultsindicate the validity of the proposed method.
关 键 词:多模态识别技术 特征融合 分类距离分数 信息熵 自适应融合
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145