检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖忠宝[1]
出 处:《车用发动机》2017年第6期84-89,共6页Vehicle Engine
摘 要:为提高柴油机故障诊断速度和精度,提出了基于改进多尺度核独立元分析与量子粒子群优化核极限学习机的故障诊断方法。首先利用固有时间尺度分解对缸盖振动信号进行多尺度时频分解,并根据故障敏感度参数筛选有效分量以实现振动冲击特征增强;然后利用核独立元分析消除有效分量间的频带混叠,分离故障敏感频带,并提取各频带的AR模型参数、多尺度模糊熵和标准化能量矩构造联合故障特征向量;最后建立基于量子粒子群优化的核极限学习分类器实现柴油机故障诊断。试验结果表明,该方法有效增强了缸盖振动信号中的故障敏感特征,提高了柴油机故障诊断速度和精度,故障分类准确率达到98.45%。In order to improve the speed and accuracy of diesel engine fault diagnosis ,a method based on improved multiscale kernel independent component analysis (MSKICA) and kernel extreme learning machine optimized by quantum particle swarm optimization (QPSO-KELM ) was proposed .The cylinder head vibration signal was first decomposed into several time-frequency bands by intrinsic time-scale decomposition and the effective components were selected according to the fault sensitiv -ity in order to enhance the vibration characteristics .Then the frequency aliasing between different effective components was e-liminated by using kernel independent component analysis in order to find the fault sensitive frequency bands .And the AR mod-el parameters ,multiscale fuzzy entropy and standardized energy moment of each band were extracted to build the structural feature vector .The kernel extreme learning machine optimized by quantum particle swarm optimization was finally constructed to diagnose diesel engine fault .The tests results indicate that the proposed method effectively enhances the features sensitive to engine fault in cylinder head vibration signal and the fault classification accuracy is higher than 98 .45% ,which improves the speed and accuracy of diesel engine fault diagnosis .
关 键 词:固有时间尺度分解 多尺度核独立元分析 特征增强 量子粒子群 核极限学习机 故障诊断
分 类 号:TK428[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15