检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈贵平
机构地区:[1]贵州师范大学大数据与计算机科学学院,贵阳550001
出 处:《沈阳工业大学学报》2018年第1期94-98,共5页Journal of Shenyang University of Technology
基 金:贵州省科协专项及调研课题基金资助项目(201602)
摘 要:无人机的姿态控制易受外界气流干扰和模型参数摄动影响,为了提高其姿态控制的精度和稳定度,提出了将变结构控制与递归小波神经网络相结合的优化鲁棒控制律.构建并分析了无人机的姿态运动模型,采用变结构控制来设计无人机姿态运动的稳定控制律,将递归小波神经网络加入到控制闭环回路中以实现变结构控制律的优化,减弱控制律对模型准确度的依赖性,并在仿真验证中与传统方法进行了比较.结果表明,该控制律能够提高其姿态控制的稳定性,且具有较强鲁棒性、较短收敛时间和较小能量消耗,从而证明了本文方法的有效性和可行性.The attitude control of unmanned aerial vehicle( UAV) is susceptible to the external air flowdisturbance and model parameter perturbation. In order to improve the accuracy and stability of attitude control,an optimized robust control lawwas proposed based on variable structure control and recurrent wavelet neural networks. The attitude motion model for UAV was constructed and analyzed. A stabilized control lawfor the attitude motion of UAV was designed with the variable structure control. The recurrent wavelet neural networks were added into the control closed loop. Therefore,the variable structure control lawcould be optimized and the dependence of control lawon the model accuracy could be weakened. In addition,the comparison with the traditional methods was performed in the simulation validation. The results showthat the proposed control lawcan improve the stability of attitude control of UAV,and has strong robustness,shorter convergence time and less energy consumption,which proves the effectiveness and feasibility of the proposed method.
关 键 词:无人机 姿态控制 变结构控制 递归小波神经网络 优化控制 稳定性 鲁棒性 能量消耗
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49