检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡根生[1,2,3] 查慧敏 梁栋 鲍文霞[1,2,3]
机构地区:[1]安徽大学计算智能与信号处理教育部重点实验室,安徽合肥230039 [2]安徽大学电子信息工程学院,安徽合肥230601 [3]偏振光成像探测技术安徽省重点实验室,安徽合肥230031
出 处:《电子学报》2017年第12期2855-2862,共8页Acta Electronica Sinica
基 金:国家自然科学基金(No.61672032;No.61401001);安徽省自然科学基金(No.1408085MF121);偏振光成像探测技术安徽省重点实验室开放课题(No.2016-KFKT-003)
摘 要:利用多源多时相遥感图像,给出一种结合分类与迁移学习的薄云覆盖遥感图像地物信息恢复算法.首先利用多方向非抽样对偶树复小波变换对多源多时相遥感图像进行多分辨率分解,对分解后的薄云图像的高频系数利用贝叶斯方法进行地物初分类;再对每类地物的低频系数通过迁移最小方差支持向量回归模型进行域自适应学习,获取模型参数;最后利用所获的迁移回归模型,用无云参考图像的低频系数预测薄云覆盖图像的低频系数,去除薄云,恢复薄云覆盖图像的地物信息.实验结果表明,本文算法恢复的地物细节清楚,光谱失真较小.特别对地物季节性变化的薄云覆盖遥感图像,本文算法能有效恢复薄云覆盖区域的地物信息.By using multi-source and multi-temporal remote sensing images,a ground object information recovery algorithm for thin cloud contaminated remote sensing images is proposed by combining classification with transfer learning.Firstly,multi-resolution decomposition of multi-source and multi-temporal remote sensing images is performed by using multi-directional nonsubsampled dual-tree complex wavelet transform. The decomposed high frequency coefficients of the ground objects of the thin cloud images are primarily classified by using Bayesian method. Then the transfer least square support vector regression model is trained to obtain the model parameters by using the domain adaptive learning of the low frequency coefficients of each class of ground objects. Finally, the low frequency coefficients of the thin cloud-contaminated images are predicted by using those of the cloudless reference images. The thin clouds are removed and the ground object information of the thin cloud contaminated images is recovered. Experimental results show that the ground objects recovered by the proposed algorithm have clear spatial details and small spectral distortion. Especially for the thin cloud contaminated remote sensing images with seasonal variation of ground objects, the proposed algorithm can effectively recover the ground object information contaminated by thin clouds.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175