检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学通信工程学院,陕西西安710071
出 处:《通信学报》2017年第12期1-9,共9页Journal on Communications
基 金:国家自然科学基金资助项目(No.61771366);"111"计划基金资助项目(No.B08038)~~
摘 要:在多假设分布式压缩视频感知系统中,多假设的质量对重构性能意义重大。现有工作中,对于多假设集合获取的研究并未得到关注。提出一种多参考帧假设集合优化选择(MRHO)算法,增加参考帧数目以扩大假设选择范围,通过假设优化选择,在相同假设集合尺寸下提高了集合质量。仿真表明,MRHO算法有效提高了视频重构质量。In multi-hypothesis based distributed compressed video sensing systems, the quality of the multi-hypothesis set has important influence on the reconstruction performance of decoder. However, the acquiring of the hypothesis set has not been concerned in existing works. A reconstruction algorithm based on multi-reference frames hypothesis optimiza- tion (MRHO) was proposed. This algorithm expanded the selection of hypothesis vectors by increasing the number of reference frames. The quality of the prediction set was improved by hypotheses optimization selection under the same size with the original hypothesis set. Simulation results show that the proposed MRHO algorithm effectively improves the reconstructed quality of the distributed compressed video sensing scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62