检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学机电工程与自动化学院,上海200072
出 处:《计算机技术与发展》2018年第1期28-32,共5页Computer Technology and Development
基 金:上海市2015年度"科技创新行动计划"高新技术领域项目(15511109700)
摘 要:粗糙集是一种处理不确定、不完全理论的经典理论,属性约简是粗糙集理论的核心知识之一。为适应大数据的发展,对广泛应用于数据不确定性、不完备性处理的属性约简算法相应改进,提出两种适应分布式处理的属性约简算法。首先提出基于MapReduce框架和正域的属性约简算法;并借鉴Hadoop分布式处理机制,针对差别矩阵all-to-all比较特性,提出一种新型分布式处理机制,基于该机制提出了一种适应分布式数据处理机制的新型数据分割及分布规则,基于该规则探讨了基于差别矩阵的属性约简算法在新型分布式处理机制下的具体实现方法。仿真算例表明了这两种算法处理大数据集的有效性。Rough set is a classical theory of processing uncertain and incomplete theory, and attribute reduction is one of the core knowledge of rough set theory. In order to adapt to the development of big data, the attribute reduction algorithm should be improved accordingly with abroad application in data uncertainty and incomplete processing. In this context, we propose two kinds of attribute reduction algorithm. First, an attribute reduction algorithm based on the MapReduce framework and the positive domain is presented. Then, a new distributed processing mechanism is proposed for the all-to-all comparison feature of the difference matrix by means of Hadoop distributed processing mechanism, based on which, a new data segmentation and distribution rules of the data processing mechanism are discussed. On the basis of this rule, the attribute reduction algorithm based on the difference matrix is discussed in the new distributed processing mechanism. A simulation example shows the effectiveness of the two algorithms in dealing with large data sets.
关 键 词:属性约简 分布式 大数据 正域 all—to—all比较
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7