检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北理工大学电气工程学院,河北唐山063000
出 处:《农机化研究》2018年第6期43-46,52,共5页Journal of Agricultural Mechanization Research
基 金:河北省自然科学基金项目(F2015209242)
摘 要:通过分析收割机传感器输出信号,发现输出信号中掺杂着大量无用噪声信号,使测产的精度产生了很大误差。一般的噪声信号处理使用一些简单的数字滤波方式可以起到滤波的作用,但收割机在田间行驶过程中车辆振动及田间沟壑等对传感器产生的不规则和随机的振动会造成称量结果的误差大和不稳定。为此,提出了一种小波分析结合神经网络的算法对传感器输出信号进行降噪处理的方法。通过实验仿真得出,采用小波神经网络算法处理后的测量信号比传统滤波去噪方法更接近实际测量结果,测量相对平均误差可减小到2.14%。By analyzing the sensor output signal of the harvester,it is found that the output signal is mixed with a large number of unwanted noise signals,which makes a great error to the accuracy of the measurement. General noise signal processing using some simple digital filtering method can play the role of filtering. However,the irregularities and random vibrations caused by the vibration of the harvesters during the field movement,such as vehicle vibration and field gully,are large and unstable. Aiming at this problem,this paper proposes a wavelet analysis combined with neural network algorithm to denoise the sensor output signal. The experimental results show that the measured signal processed by wavelet neural network algorithm is closer to the actual measurement result than the traditional filtering denoising method. The relative mean error of the measurement can be reduced to 2. 14%.
分 类 号:S225[农业科学—农业机械化工程] TP391.42[农业科学—农业工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.83.171