检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China [2]University of Chinese Academy of Sciences, Beijing 100049, China
出 处:《Science China(Information Sciences)》2018年第1期109-118,共10页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China (Grants Nos. 61672504, 60721061, 60833001, 61572478, 61672503, 61100069, 61161130530);National Basic Research Program of China (973 Program) (Grant No. 2014CB340700)
摘 要:Many recent implementations of concurrent data structures relaxed their linearizability requirements for better performance and scalability. Quasi-linearizability, k-linearizability and regular-relaxed linearizability are three quantitative relaxation variants of linearizability that have been proposed as correctness conditions of relaxed data structures, yet preserving the intuition of linearizability. Quasi-linearizability has been proved undecidable. In this paper, we first show that k-linearizability is undecidable for a bounded number of processes, by reducing quasi-linearizability into it. We then show that regular-relaxed linearizability is decidable for a bounded number of processes. We also find that the number of the states of a relaxed specification is exponential to the number of the states of the underlying specification automaton(representing its relaxation strategy), and polynomial to the number of the states of the underlying quantitative sequential specification and the number of operations.Many recent implementations of concurrent data structures relaxed their linearizability requirements for better performance and scalability. Quasi-linearizability, k-linearizability and regular-relaxed linearizability are three quantitative relaxation variants of linearizability that have been proposed as correctness conditions of relaxed data structures, yet preserving the intuition of linearizability. Quasi-linearizability has been proved undecidable. In this paper, we first show that k-linearizability is undecidable for a bounded number of processes, by reducing quasi-linearizability into it. We then show that regular-relaxed linearizability is decidable for a bounded number of processes. We also find that the number of the states of a relaxed specification is exponential to the number of the states of the underlying specification automaton(representing its relaxation strategy), and polynomial to the number of the states of the underlying quantitative sequential specification and the number of operations.
关 键 词:concurrent data structures quantitative relaxation LINEARIZABILITY DECIDABILITY finite automata
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15