机构地区:[1]Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization,Huanggang Normal University, Huanggang 438000, Hubei, China [2]School of Physics and Technology, Wuhan University,Wuhan 430072, Hubei, China
出 处:《Wuhan University Journal of Natural Sciences》2018年第1期43-50,共8页武汉大学学报(自然科学英文版)
基 金:Supported by the National Natural Science Foundation of China(31600592);Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains(2017BX08)
摘 要:Most riboswitches are characterized by two components, an aptamer domain that folds into a unique ligand binding pocket to interact with the ligand, and an expression platform that converts folding changes in the aptamer into changes in gene expression. Using the recently developed systematic helix-based computational method, we theoretically studied the refolding and co-transcriptional folding behaviors of the purine riboswitch aptamers from Bacillus subtilis xpt-pbu X guanine riboswitch and Vibrio vulnificus add adenine riboswitch. Despite several intermediate structures persisting a short time during the transcription, helices P2, P3 and P1 fold in turn for both aptamers. Although some misfolded structures are observed during the refolding process, the RNAs can fold into the ligand binding pocket structure containing helices P2, P3 and P1 within a few seconds, suggesting the aptamer domains are highly evolved. The purine riboswitch aptamers can quickly fold into the ligand binding pocket structure even at a high transcription speed, possibly because formation of this structure is the necessary prerequisite for the riboswitch to bind its ligand and then regulate relevant gene expression.Most riboswitches are characterized by two components, an aptamer domain that folds into a unique ligand binding pocket to interact with the ligand, and an expression platform that converts folding changes in the aptamer into changes in gene expression. Using the recently developed systematic helix-based computational method, we theoretically studied the refolding and co-transcriptional folding behaviors of the purine riboswitch aptamers from Bacillus subtilis xpt-pbu X guanine riboswitch and Vibrio vulnificus add adenine riboswitch. Despite several intermediate structures persisting a short time during the transcription, helices P2, P3 and P1 fold in turn for both aptamers. Although some misfolded structures are observed during the refolding process, the RNAs can fold into the ligand binding pocket structure containing helices P2, P3 and P1 within a few seconds, suggesting the aptamer domains are highly evolved. The purine riboswitch aptamers can quickly fold into the ligand binding pocket structure even at a high transcription speed, possibly because formation of this structure is the necessary prerequisite for the riboswitch to bind its ligand and then regulate relevant gene expression.
关 键 词:purine riboswitch gene regulation APTAMER co-transcriptional folding
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...